pyvista.core._validation.validate.validate_arrayN#
- validate_arrayN(arr: float | VectorLike[float], /, *, reshape: bool = True, **kwargs)[source]#
Validate a numeric 1D array.
The array is checked to ensure its input values:
have shape
(N,)
or can be reshaped to(N,)
are numeric
The returned array is formatted so that its values:
have shape
(N,)
- Parameters:
- arr
VectorLike
[float
] Array to validate.
- reshapebool, default:
True
If
True
, 0-dimensional scalars are reshaped to(1,)
and 2D vectors with shape(1, N)
are reshaped to(N,)
to ensure the output is consistently one-dimensional. Otherwise, all scalar and 2D inputs are not considered valid.- **kwargs
dict
,optional
Additional keyword arguments passed to
validate_array()
.
- arr
- Returns:
np.ndarray
Validated 1D array.
See also
validate_arrayN_unsigned
Similar function for non-negative integer arrays.
validate_array
Generic array validation function.
Examples
Validate a 1D array with four elements.
>>> from pyvista import _validation >>> _validation.validate_arrayN((1, 2, 3, 4)) array([1, 2, 3, 4])
Scalar 0-dimensional values are automatically reshaped to be 1D.
>>> _validation.validate_arrayN(42.0) array([42.0])
2D arrays where the first dimension is unity are automatically reshaped to be 1D.
>>> _validation.validate_arrayN([[1, 2]]) array([1, 2])
Add additional constraints if needed.
>>> _validation.validate_arrayN((1, 2, 3), must_have_length=3) array([1, 2, 3])